|
The north and south celestial poles are the two imaginary points in the sky where the Earth's axis of rotation, indefinitely extended, intersects the celestial sphere. The north and south celestial poles appear permanently directly overhead to an observer at the Earth's North Pole and South Pole respectively. As the Earth spins on its axis, the two celestial poles remain fixed in the sky, and all other points appear to rotate around them, completing one circuit per day (strictly per sidereal day). The celestial poles are also the poles of the celestial equatorial coordinate system, meaning they have declinations of +90 degrees and −90 degrees (for the north and south celestial poles, respectively). The celestial poles do not remain permanently fixed against the background of the stars. Because of a phenomenon known as the precession of the equinoxes, the poles trace out circles on the celestial sphere, with a period of about 25,700 years. The Earth's axis is also subject to other complex motions which cause the celestial poles to shift slightly over cycles of varying lengths; see nutation, polar motion and axial tilt. Finally, over very long periods the positions of the stars themselves change, because of the stars' proper motions. An analogous concept applies to other planets: a planet's celestial poles are the points in the sky where the projection of the planet's axis of rotation intersects the celestial sphere. These points vary because different planets' axes are oriented differently (the apparent positions of the stars also change slightly because of parallax effects).〔(【引用サイトリンク】title=Measuring the sky A quick guide to the Celestial Sphere )〕 Celestial bodies other than Earth also have similarly defined celestial poles. ==Finding the north celestial pole== The north celestial pole currently is within a degree of the bright star Polaris (named from the Latin ''stella polaris'', meaning "pole star"). This makes Polaris useful for navigation in the northern hemisphere: not only is it always above the north point of the horizon, but its altitude angle is always (nearly) equal to the observer's geographic latitude. Polaris can, of course, only be seen from locations in the northern hemisphere. Polaris is near the celestial pole for only a small fraction of the 25,700-year precession cycle. It will remain a good approximation for about 1,000 years, by which time the pole will have moved to be closer to Alrai (Gamma Cephei). In about 5,500 years, the pole will have moved near the position of the star Alderamin (Alpha Cephei), and in 12,000 years, Vega (Alpha Lyrae) will become our north star, but it will be about six degrees from the true north celestial pole. To find Polaris, face north and locate the Big Dipper (Plough) and Little Dipper asterisms. Looking at the "cup" part of the Big Dipper, imagine that the two stars at the outside edge of the cup form a line pointing upward out of the cup. This line points directly at the star at the tip of the Little Dipper's handle. That star is Polaris, the North Star.〔(【引用サイトリンク】title=Earth-Sky Relationships and the Celestial Sphere )〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Celestial pole」の詳細全文を読む スポンサード リンク
|